首页 | 本学科首页   官方微博 | 高级检索  
     


High resolution crystal structures of the trans-enamine intermediates formed by sulbactam and clavulanic acid and E166A SHV-1 {beta}-lactamase
Authors:Padayatti Pius S  Helfand Marion S  Totir Monica A  Carey Marianne P  Carey Paul R  Bonomo Robert A  van den Akker Focco
Affiliation:Department of Biochemistry, Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
Abstract:Antibiotic resistance mediated by constantly evolving beta-lactamases is a serious threat to human health. The mechanism of inhibition of these enzymes by therapeutic beta-lactamase inhibitors is probed using a novel approach involving Raman microscopy and x-ray crystallography. We have presented here the high resolution crystal structures of the beta-lactamase inhibitors sulbactam and clavulanic acid bound to the deacylation-deficient E166A variant of SHV-1 beta-lactamase. Our previous Raman measurements have identified the trans-enamine species for both inhibitors and were used to guide the soaking time and concentration to achieve full occupancy of the active sites. The two inhibitor-bound x-ray structures revealed a linear trans-enamine intermediate covalently attached to the active site Ser-70 residue. This intermediate was thought to play a key role in the transient inhibition of class A beta-lactamases. Both the Raman and x-ray data indicated that the clavulanic acid intermediate is decarboxylated. When compared with our previously determined tazobactam-bound inhibitor structure, our new inhibitor-bound structures revealed an increased disorder in the tail region of the inhibitors as well as in the enamine skeleton. The x-ray crystallographic observations correlated with the broadening of the O-C=C-N (enamine) symmetric stretch Raman band near 1595 cm(-1). Band broadening in the sulbactam and clavulanic acid inter-mediates reflected a heterogeneous conformational population that results from variations of torsional angles in the O-(C=O)-C=C=NH-C skeleton. These observations led us to conclude that the conformational stability of the trans-enamine form is critical for their transient inhibitory efficacy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号