首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen-Sulfide Microgradients
Authors:Douglas C Nelson  Bo Barker Jrgensen  and Niels Peter Revsbech
Institution:Douglas C. Nelson, Bo Barker Jørgensen, and Niels Peter Revsbech
Abstract:Recently developed techniques involving opposed, gel-stabilized gradients of O2 and H2S permit cultivation of a marine Beggiatoa strain as a chemolithoautotroph which uses gliding motility to precisely track the interface between H2S and O2. In the current study with microelectrodes, vertical profiles of H2, O2, and pH were measured in replicate cultures grown for various intervals. After an initial period of exponential biomass increase (doubling time, 11 h), linear growth prevailed throughout much of the time course. This H2S-limited growth was followed by a transition to stationary phase when the declining H2S flux was sufficient only to supply maintenance energy. During late-exponential and linear growth phases, the Beggiatoa sp. consumed a constant 0.6 mol of H2S for each 1.0 mol of O2, the ratio anticipated for balanced lithoautotrophic growth at the expense of complete oxidation of H2S to SO42−. Over the entire range of conditions studied, this consumption ratio varied by approximately twofold. By measuring the extent to which the presence of the bacterial plate diminished the overlap of O2 and H2S, we demonstrated that oxidation of H2S by Beggiatoa sp. is approximately 3 orders of magnitude faster than spontaneous chemical oxidation. By integrating sulfide profiles and comparing sulfide consumed with biomass produced, a growth yield of 8.4 g (dry weight) mol−1 of H2S was computed. This is higher than that found for sulfide-grown thiobacilli, indicating very efficient growth of Beggiatoa sp. as a chemoautotroph. The methods used here offer a unique opportunity to determine the yield of H2S-oxidizing chemolithoautotrophs while avoiding several problems inherent in the use of homogeneous liquid culture. Finally, by monitoring time-dependent formation of H2S profiles under anoxic conditions, we demonstrate a method for calculating the molecular diffusion coefficient of soluble substrates in gel-stabilized media.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号