首页 | 本学科首页   官方微博 | 高级检索  
     


Bcl-2 phosphorylation and proteasome-dependent degradation induced by paclitaxel treatment: consequences on sensitivity of isolated mitochondria to Bid
Authors:Brichese L  Barboule N  Heliez C  Valette A
Affiliation:LBCMCP, UMR CNRS 5088, Université Paul Sabatier, 31, Toulouse, France.
Abstract:Several studies have suggested that Bcl-2 phosphorylation, which occurs during mitotic arrest induced by paclitaxel, inhibits its antiapoptotic function. In the present study, we demonstrated that the level of phosphorylated Bcl-2 was threefold higher in mitochondria than in the nuclear membrane or endoplasmic reticulum. Our results show, in isolated mitochondria, that phosphorylation of Bcl-2 in mitosis does not modify either its integration into the mitochondrial membrane or the ability to release cytochrome c in response to Bid, a cytochrome c releasing agent. In HeLa cells, in which paclitaxel induces apoptosis, the nonphosphorylated form of Bcl-2 is degraded by a proteasome-dependent degradation pathway, whereas the phosphorylated forms of mitochondrial Bcl-2 appear to be resistant to proteasome-induced degradation. We found that low concentrations of recombinant Bid triggered a greater release of cytochrome c from mitochondria isolated from paclitaxel-treated HeLa cells than from mitochondria isolated from control HeLa cells. Taken together, these results show that Bcl-2 phosphorylation does not inhibit its function. On the contrary, Bcl-2 phosphorylation indirectly regulated its antiapoptotic action via protection against degradation. Indeed, in response to paclitaxel treatment, the level of Bcl-2 expression in mitochondria rather than its phosphorylation state could regulate the sensitivity of mitochondria to cytochrome c releasing agents in vitro.
Keywords:Bcl-2   antiapoptotic function   phosphorylation   down-regulation   paclitaxel   mitochondria   cytochrome c   Bid
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号