首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of functional human transferrin in stably transfected Drosophila S2 cells
Authors:Lim Hye Jung  Kim Yeon Kyu  Hwang Dong Soo  Cha Hyung Joon
Affiliation:Department of Chemical Engineering and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
Abstract:Human transferrin (hTf) is a serum glycoprotein involved in Fe3+ transport. Here, a plasmid encoding the hTf gene fused with a hexahistidine (His6) epitope tag under Drosophila metallothionein promoter (pMT) was stably transfected into Drosophila melanogaster S2 cells as a nonlytic plasmid-based system. Following 3 days of copper sulfate induction, transfected S2 cells were found to secrete hTf into serum-free culture medium at a competitively high expression level of 40.8 microg/mL, producing 6.8 microg/mL/day in a 150-mL spinner flask culture. Purification of secreted recombinant hTf using immobilized metal affinity chromatography (IMAC) yielded 95.5% pure recombinant hTf with a recovery of 32%. According to MALDI-TOF mass spectrometry analysis, purified S2 cell-derived His6-tagged recombinant hTf had a molecular weight (76.4 kDa) smaller than that of native apo-hTf (78.0 kDa). 2-Dimensional gel electrophoresis patterns showed recombinant hTf had a simpler and less acidic profile compared to that of native hTf. These data suggest recombinant hTf was incompletely (noncomplex) glycosylated and lacked sialic acids on N-glycans. However, this difference in N-glycan structure compared to native hTf had no effect on the iron-binding activity of recombinant hTf. The present data show that a plasmid-based stable transfection S2 cell system can be successfully employed as an alternative for producing secreted functional recombinant hTf.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号