首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of inhibition of porcine leukocyte 12-lipoxygenase by the isoform-specific inhibitor 4-(2-oxapentadeca-4-yne)phenylpropanoic acid
Authors:Richards K M  Moody J S  Marnett L J
Affiliation:Department of Biochemistry, The A.B. Hancock, Jr. Memorial Laboratory for Cancer Research, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, USA.
Abstract:The mechanism of inhibition of porcine leukocyte 12-lipoxygenase by 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP) was investigated. This compound is selective for the leukocyte form of the 12-lipoxygenase and inhibits the purified recombinant enzyme with an IC(50) value of approximately 2 microM. OPP induced a concentration-dependent lag phase in the oxygenation of arachidonic acid and decreased the maximal rate of reaction. Addition of the fatty acid hydroperoxide 13(S)-hydroperoxyoctadecadienoic acid (13-HPODE) to the reaction greatly reduced the OPP-induced lag. Lineweaver-Burk analysis of the effect of OPP on 12-lipoxygenase kinetics with arachidonic acid indicated that it was a mixed-type inhibitor. OPP was not metabolized by 12-lipoxygenase as evidenced by its quantitative recovery from incubations with stoichiometric amounts of enzyme and 13-HPODE or arachidonic acid. OPP inhibited the pseudoperoxidase activity of the enzyme with 13-HPODE and the reducing agent, BWA137C. Lineweaver-Burk analysis of the effect of OPP on pseudoperoxidase kinetics suggested that OPP was competitive with 13-HPODE. Single-turnover experiments indicated that OPP inhibited the reduction of 13-HPODE by a stoichiometric amount of ferrous 12-lipoxygenase. Addition of 13-HPODE shortened the OPP-induced lag phase but did not affect the maximal rate of enzyme activity. In addition, OPP had no effect on total product formation in either the presence or the absence of 5 microM 13-HPODE when the reaction was allowed to go to completion. All of these observations are consistent with a model for inhibition of 12-lipoxygenase activity in which OPP slows the oxidation of the inactive ferrous enzyme to the active ferric enzyme and competes with arachidonic acid for the ferric enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号