首页 | 本学科首页   官方微博 | 高级检索  
     


Tremor and other oscillations in neuromuscular systems
Authors:R. B. Stein  M. N. Oĝuztöreli
Affiliation:(1) Departments of Physiology and Mathematics, University of Alberta, Edmonton, Canada
Abstract:A model has been analyzed which is based on recent experimental evidence concerning the properties of muscles and the sensory feedback pathways from muscles. Damped oscillations can arise in the absence of sensory feedback due to the interaction of a muscle with inertial loads. These mechanical oscillations can have a wide range of frequencies depending on the inertial and elastic loads that are attached to the muscle. Small amounts of sensory feedback will tend to reduce deviations from a steady muscle length, but larger amounts of feedback can produce oscillations. The frequency of these reflex oscillations is determined by the properties of the muscle and feedback pathway, and is rather independent of load. If the strength of the sensory feedback is sufficient, either the mechanical oscillations or the reflex oscillations or both can grow, rather than decay, with time. The growth of these oscillations is limited by saturation non-linearities in the muscle receptors and the muscle itself, so that the oscillations approach a steady amplitude and frequency. Using typical properties of muscles and spinal reflex pathways, the frequency of reflex oscillations will be within the range 8–12 Hz found for physiological tremor. With the longer latency found for supraspinal reflexes, oscillations will occur in the range 4–6 Hz which is characteristic of Parkinson's and cerebellar diseases. The role of longer latency reflexes in the generation of these tremors is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号