首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Different susceptibility of red cell membrane proteins to calpain degradation.
Authors:F Salamino  R De Tullio  P Mengotti  P L Viotti  E Melloni  S Pontremoli
Institution:Institute of Biochemistry, University of Genoa, Italy.
Abstract:The presence of low levels of calpastatin activity in erythrocytes of hypertensive rats affects regulation of calpain activity so it is highly susceptible to activation within physiological fluctuations in Ca2+]. Under identical conditions, in red cells of normotensive rats, calpain activation is efficiently controlled by the high levels of calpastatin activity, and a progressive increase in proteinase activity can only be observed in parallel with a decrease in the level of calpastatin. In intact erythrocytes from hypertensive rats exposed to small variations in Ca2+], degradation of anion transport protein (band 3) and Ca(2+)-ATPase appears as a primary event indicating that these two transmembrane proteins are probably early recognized as targets of intracellular calpain activity. Furthermore, band 3 protein seems to be structurally modified in erythrocytes from hypertensive rats, as indicated by its increased susceptibility to degradation in the presence of 10-50 microM Ca2+. In addition, when exposed to progressive and limited increases in Ca2+], erythrocytes from hypertensive rats, but not those from normotensive rats, show a high degree of fragility that can be restored to normal values by inhibition of calpain. These results indicate that, within fluctuations in Ca2+] close to physiological values, regulation of calpain activity is efficiently accomplished in normal erythrocytes but is completely lost in cells from hypertensive animals. Regulation is of critical importance in maintaining normal structural and functional properties of selective red cell membrane and cytoskeletal proteins, among which band 3 and Ca(2+)-ATPase appear to be the substrates with highest susceptibility to digestion by calpain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号