首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors
Authors:Shipley R J  Davidson A J  Chan K  Chaudhuri J B  Waters S L  Ellis M J
Institution:Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, 24-29 St. Giles', Oxford OX1 3LB, UK. shipley@maths.ox.ac.uk
Abstract:The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cminKm we capture oxygen uptake using zero‐order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When equation image , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. Biotechnol. Bioeng. 2011; 108:1450–1461. © 2011 Wiley Periodicals, Inc.
Keywords:tissue engineering  bioreactor  oxygen  mass transport  mathematical modeling
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号