首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neural aromatization accelerates the acquisition of spatial memory via an influence on the songbird hippocampus
Authors:Oberlander Joseph G  Schlinger Barney A  Clayton Nicola S  Saldanha Colin J
Institution:Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
Abstract:Circulating estrogens affect the neural circuits that underlie learning and memory in several vertebrates via an influence on the hippocampus. In the songbird hippocampus local estrogen synthesis due to the abundant expression of aromatase may modulate hippocampal function including spatial memory performance. Here, we examined the effect of estradiol, testosterone, and dihydrotestosterone on the structure and function of the songbird hippocampus. Adult male zebra finches were castrated, implanted with one of these steroids or a blank implant, and trained on a spatial memory task. The rate of acquisition and overall performance on this task was recorded by direct observation. The size and density of cells in the hippocampus and its volume were measured. Estradiol-treated birds learned the task more rapidly than any other group. Although testosterone- and blank-implanted birds did learn the task, we found no evidence of learning in dihydrotestosterone-implanted subjects. Cells in the rostral hippocampus were larger in estradiol- and testosterone-treated birds relative to other groups. A corresponding decrease in the density of cells was apparent in estradiol-implanted subjects relative to all other groups. These data suggest that estradiol may accelerate the acquisition of a spatial memory task and increase the size of neurons in the rostral hippocampus. Since testosterone-mediated changes in acquisition and cell size were similar to those of estradiol, but not dihydrotestosterone, we conclude that neural aromatization of testosterone to estrogen is responsible for effects on the structure and function of the songbird hippocampus.
Keywords:Estrogen  Testosterone  Aromatase  Zebra finch  Dihydrotestosterone  Synapse
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号