Genetic identification of adenovirus type 5 genes that influence viral spread |
| |
Authors: | Subramanian T Vijayalingam S Chinnadurai G |
| |
Affiliation: | Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, St. Louis, MO 63110, USA. |
| |
Abstract: | The mechanisms that control cell-to-cell spread of human adenoviruses (Ad) are not well understood. Two early viral proteins, E1B-19K and E3-ADP, appear to have opposing effects since viral mutants that are individually deficient in E1B-19K produce large plaques (G. Chinnadurai, Cell 33:759-766, 1983), while mutants deficient in E3-ADP produce small plaques (A. E. Tollefson et al., J. Virol. 70:2296-2306, 1996) on infected cell monolayers. We have used a genetic strategy to identify different viral genes that influence adenovirus type 5 (Ad5) spread in an epithelial cancer cell line. An Ad5 mutant (dl327; lacking most of the E3 region) with the restricted-spread (small-plaque) phenotype was randomly mutagenized with UV, and 27 large-plaque (lp) mutants were isolated. A combination of analyses of viral proteins and genomic DNA sequences have indicated that 23 mutants contained lesions in the E1B region affecting either 19K or both 19K and 55K proteins. Four other lp mutants contained lesions in early regions E1A and E4, in the early L1 region that codes for the i-leader protein, and in late regions that code for the viral structural proteins, penton base, and fiber. Our results suggest that the requirement of E3-ADP for Ad spread could be readily compensated for by abrogation of the functions of E1B-19K and provide genetic evidence that these two viral proteins influence viral spread in opposing manners. In addition to E1B and E3 proteins, other early and late proteins that regulate viral replication and infectivity also influence lateral viral spread. Our studies have identified novel mutations that could be exploited in designing efficient oncolytic Ad vectors. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|