首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive behaviors of Drosophila larvae on slippery surfaces
Authors:Li Guo  Yixuan Sun  Sijian Liu
Affiliation:Zhejiang Lab, Nanhu Headquarters, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou City, Zhejiang Province 311121 People’s Republic of China
Abstract:Friction is ubiquitous but an essential force for insects during locomotion. Insects use dedicated bio-mechanical systems such as adhesive pads to modulate the intensity of friction, providing a stable grip with touching substrates for locomotion. However, how to uncover behavioral adaptation and regulatory neural circuits of friction modification is still largely understood. In this study, we devised a novel behavior paradigm to investigate adaptive behavioral alternation of Drosophila larvae under low-friction surfaces. We found a tail looseness phenotype similar to slipping behavior in humans, as a primary indicator to assess the degree of slipping. We found a gradual reduction on slipping level in wild-type larvae after successive larval crawling, coupled with incremental tail contraction, displacement, and speed acceleration. Meanwhile, we also found a strong correlation between tail looseness index and length of contraction, suggesting that lengthening tail contraction may contribute to enlarging the contact area with the tube. Moreover, we found a delayed adaptation in rut mutant larvae, inferring that neural plasticity may participate in slipping adaptation. In conclusion, our paradigm can be easily and reliably replicated, providing a feasible pathway to uncover the behavioral principle and neural mechanism of acclimation of Drosophila larvae to low-friction conditions.
Keywords:Drosophila   Slipping   Locomotion   Adaptation   Paradigm
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号