首页 | 本学科首页   官方微博 | 高级检索  
     


The in vivo phosphorylation sites of rat brain dynamin I
Authors:Graham Mark E  Anggono Victor  Bache Nicolai  Larsen Martin R  Craft George E  Robinson Phillip J
Affiliation:Cell Signaling Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia.
Abstract:Dynamin I (dynI) is phosphorylated in synaptosomes at Ser(774) and Ser(778) by cyclin-dependent kinase 5 to regulate recruitment of syndapin I for synaptic vesicle endocytosis, and in PC12 cells on Ser(857). Hierarchical phosphorylation of Ser(774) precedes phosphorylation of Ser(778). In contrast, Thr(780) phosphorylation by cdk5 has been reported as the sole site (Tomizawa, K., Sunada, S., Lu, Y. F., Oda, Y., Kinuta, M., Ohshima, T., Saito, T., Wei, F. Y., Matsushita, M., Li, S. T., Tsutsui, K., Hisanaga, S. I., Mikoshiba, K., Takei, K., and Matsui, H. (2003) J. Cell Biol. 163, 813-824). To resolve the discrepancy and to better understand the biological roles of dynI phosphorylation, we undertook a systematic identification of all phosphorylation sites in rat brain nerve terminal dynI. Using phosphoamino acid analysis, exclusively phospho-serine residues were found. Thr(780) phosphorylation was not detectable. Mutation of Ser(774), Ser(778), and Thr(780) confirmed that Thr(780) phosphorylation is restricted to in vitro conditions. Mass spectrometry of (32)P-labeled phosphopeptides separated by two-dimensional mapping revealed seven in vivo phosphorylation sites: Ser(774), Ser(778), Ser(822), Ser(851), Ser(857), Ser(512), and Ser(347). Quantification of (32)P radiation in each phosphopeptide showed that Ser(774) and Ser(778) were the major sites (up to 69% of the total), followed by Ser(851) and Ser(857) (12%), and Ser(853) (2%). Phosphorylation of Ser(851) and Ser(857) was restricted to the long tail splice variant dynIxa and was not hierarchical. Co-purified, (32)P-labeled dynIII was phosphorylated at Ser(759), Ser(763), and Ser(853). Ser(853) is homologous to Ser(851) in dynIxa. The results identify all major and several minor phosphorylation sites in dynI and provide the first measure of their relative abundance and relative responses to depolarization. The multiple phospho-sites suggest subtle regulation of synaptic vesicle endocytosis by new protein kinases and new protein-protein interactions. The homologous dynI and dynIII phosphorylation indicates a high mechanistic similarity. The results suggest a unique role for the long splice variants of dynI and dynIII in nerve terminals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号