首页 | 本学科首页   官方微博 | 高级检索  
     


Effective activation energy of enzymatic and nonenzymatic reactions. Evolution-imposed requirements to enzyme structure
Authors:L I Krishtalik
Affiliation:The A. N. Frumkin Institute of Electrochemistry, Academy of Sciences of the U.S.S.R., Moscow, USSR
Abstract:The difference of the activation energies in a protein globule and water has been treated in terms of the theory of an elementary act of charge transfer reaction with regards to the energy spent on the transfer of charged reactants from water into the protein. The protein was treated as a structureless dielectric with a given optical and static dielectric constants surrounded by the aqueous phase. Reactions of different types (charge exchange between reactants, charge separation, neutralization, etc.) have been analyzed both under prevalence of purely electrostatic effects and under considerable nonelectrostatic contributions to the activation energies. It is shown that for all one-electron and most multi-electron reactions involving two reaction centres the energy spent for charged reactant transfer from water into protein is greater than the concomitant activation energy gain. The same effect takes place in a number of cases for multi-centre processes as well. To overcome the entropy hindrances, the reactants and catalysts must combine into multiparticle complexes, i.e. form microscopic regions of low dielectric constant. This results in increased effective activation energy as compared to reactions in water. It has been hypothesized that in order to make up for this loss the evolution has selected the proteins which are characterized by considerable intraglobular permanent electric fields. The presence in proteins of high concentrations of strongly polar peptide groups renders them advantageous in this respect over other polymers that are less polar.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号