A cytosolic factor is required for mitochondrial cytochrome c efflux during apoptosis |
| |
Authors: | Han Z Li G Bremner T A Lange T S Zhang G Jemmerson R Wyche J H Hendrickson E A |
| |
Affiliation: | Box G, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA. |
| |
Abstract: | Treatment of HL-60 cells with staurosporine (STS) induced mitochondrial cytochrome c efflux into the cytosol, which was followed by caspase-3 activation and apoptosis. Consistent with these observations, in vitro experiments demonstrated that, except for cytochrome c, the cytosol of HL-60 cells contained sufficient amounts of all factors required for caspase-3 activation. In contrast, treatment of HCW-2 cells (an apoptotic-resistant HL-60 subclone) with STS failed to induce significant amounts of mitochondrial cytochrome c efflux, caspase-3 activation, and apoptosis. In vitro assays strongly suggested that a lack of cytochrome c in the cytosol was the primary limiting factor for caspase-3 activation in HCW-2 cells. To explore the mechanism which regulates mitochondrial cytochrome c efflux, we developed an in vitro assay which showed that cytosolic extracts from STS-treated, but not untreated, HL-60 cells contained an activity, which we designated 'CIF' (cytochrome c-efflux inducing factor), which rapidly induced cytochrome c efflux from HL-60 mitochondria. In contrast, there was no detectable CIF activity in STS-treated HCW-2 cells although the mitochondria from HCW-2 cells were responsive to the CIF activity from STS-treated HL-60 cells. These experiments have identified a novel activity, CIF, which is required for cytochrome c efflux and they indicate that the absence of CIF is the biochemical explanation for the impaired ability of HCW-2 cells to activate caspase-3 and undergo apoptosis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|