首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A COMPARISON OF PHOTOSYNTHETIC ELECTRON TRANSPORT RATES IN MACROALGAE MEASURED BY PULSE AMPLITUDE MODULATED CHLOROPHYLL FLUOROMETRY AND MASS SPECTROMETRY
Authors:Linda A Franklin and  Murray R Badger
Institution:Molecular Plant Physiology Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601 Australia
Abstract:The relationship between whole chain photosynthetic electron transport and PSII activity was investigated in Porphyra columbina (Montagne) (Rhodophyta), Ulva australis (Areschoug) (Chlorophyta), and Zonaria crenata ( J. Agardh) (Phaeophyta). Mass spectrometric measurements of gross O2 evolution and gross O2 uptake were combined with simultaneous measurement of pulse-modulated chl fluorescence under a range of irradiances and inorganic carbon (Ci) concentrations. At light-limiting irradiance, a good correlation between gross O2 evolution and the electron transport rate (ETR) calculated from chl fluorescence ((Fm′? Fs)/Fm′) was found in the optically thin species (Ulva and Porphyra). The calculated ETR was equivalent to the theoretical electron requirement in these species but overestimated gross O2 evolution in the thicker species Zonaria. In saturating light, especially when Ci availability was low, ETR overestimated gross O2 evolution in all species. Excess electron flow could not be accounted for by an increase in gross O2 uptake; thus neither Mehler-ascorbate-peroxidase reaction nor the photosynthetic carbon oxidation cycle were enhanced at high irradiance or low C i. Alternative explanations for the loss of correlation include cyclic electron flow around PSII that may be engaged under these conditions or nonphotochemical energy quenching within PSII centers. The loss of correlation between ETR and linear photosynthetic electron flow as irradiance increased from limiting to saturating or at low Ci availability and in the case of optically thick thalli limits the application of this technique for measuring photosynthesis in macroalgae.
Keywords:inorganic carbon  Mehler reaction  photoinhibition              Porphyra columbina            primary productivity              Ulva australis                Zonaria crenata
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号