首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel inactivators of serine proteases based on 6-chloro-2-pyrone
Authors:R B Westkaemper  R H Abeles
Abstract:The interaction of serine protease (esterases) with 6-chloro-2-pyrones was investigated. Time-dependent inactivation of chymotrypsin, alpha-lytic protease, pig liver elastase, and cholinesterase was found with 3- and 5-benzyl-6-chloro-2-pyrone, as well as 3- and 5-methyl-6-chloro-2-pyrone. No inactivation was observed with the unsubstituted 6-chloro-2-pyrone. The substituted pyrones did not inactivate papain or carboxypeptidase A, as well as a number of other nonproteolytic enzymes. The substituted chloropyrones, therefore, show considerable selectivity toward serine proteases. Analogues in which the 6-chloro substituent is replaced by H or OH do not inactivate. The presence of the halogen is, therefore, essential for inactivation. Chymotrypsin catalyzes the hydrolysis of 3-benzyl-6-chloro-2-pyrone. At pH 7.5, (E)-4-benzyl-2-pentenedioic acid is the major product, and 2-benzyl-2-pentenedioic anhydride is a minor product. The ration of hydrolysis product found to the number of enzyme molecules inactivated varies from 14 to 40. The enzyme inactivated with the 3-benzyl compound does not show a spectrum characteristic of the pyrone ring. This suggests that inactivation by 3-benzyl-6-chloro-2-pyrone occurs in a mechanism-based fashion after enzymatic lactone hydrolysis. When the enzyme is inactivated with the 5-benzyl compound, absorbance due to the pyrone ring is observed. We suggest that inactivation occurs through an active site directed mechanism involving a 1,6-conjugate addition of an active site nucleophile to the pyrone ring.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号