首页 | 本学科首页   官方微博 | 高级检索  
     


Myelinating glia of earthworm giant axons: thermally induced intramembranous changes
Authors:B I Roots  N J Lane
Affiliation:A.R.C. Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, University of Cambridge, Downing Street, Cambridge, U.K.
Abstract:The median and lateral giant axons in the ventral nerve cord of the earthworm Lumbricus terrestris are ensheathed by extensive spiral glial cell wrappings which resemble vertebrate myelin. The other, smaller, axons are encompassed by attenuated glial processes, as is typical of invertebrates. The fine structural details of the glial cells have been studied in thin sections and in replicas produced by freeze-fracturing where the intramembranous particle (IMP) populations within the lipid bilayer are visible. These consist of both low-profile IMPs as well as prominent ones 6-8 nm in diameter, scattered at random over the lipid interface in the myelinating glia. The larger IMPs on both P and E faces number about 80/mum2 at 16 degrees C in contrast to the IMP density of 400/mum2 in the other glial membranes. After acclimation to 5, 16 and 26 degrees C, the loose myelin glial membranes show variations in the density of their larger IMP population; in animals acclimated over 3 or more weeks to 5 degrees C, the number of these IMPs is significantly (P less than 0.001) less per unit area than in animals acclimated to 16 or 26 degrees C. The size of the particles at 5 degrees C is significantly (P less than 0.001) smaller than those at 16 or 26 degrees C. When animals are subjected to a sudden differential in ambient temperature, from 26 or 16 to 5 degrees C, or from 5 to 26 degrees C, and their giant axons with encompassing glia are fixed and frozen 30 min after this temperature change, the IMP population of the glial membranes remaining does not appear to alter. The differences in the IMP population of the myelinating glial membranes at different temperatures may reflect the extent to which they insulate and/or influence the velocity of impulse propagation.
Keywords:Glia  axon  earthworm  freeze-fracture  myelin  intramembranous particles  membrane junctions
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号