首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of recombination and mutation in 16S-23S rDNA spacer rearrangements
Authors:Gürtler V
Institution:Department of Microbiology, Austin & Repatriation Medical Centre, Heidelberg, Vic., Australia. volker@austin.unimelb.edu.au
Abstract:The intragenomic heterogeneity of the bacterial intergenic (16S-23S rDNA) spacer region (ISR) was analysed from the following species in which sequences for the complete rRNA operon (rrn) set have been determined (rrn number): Enterococcus faecalis (6) and E. faecium (6), Bacillus subtilis (10), Staphylococcus aureus (9), Vibrio cholerae (4), Haemophilus influenzae (6) and Escherichia coli (7). It was found that some spacer sequence blocks were highly conserved between operons of a genome, whereas the presence of others was variable. When these variations were analysed using the program PLATO and partial likelihood phylogenies determined by DNAml for each operon set, three regions showed significant (Z>3.3) spatial variation Region I was 78-184 nt long (2.14.4) possibly due to recombination or selection. Within Region I, there was sequence block variation in all operon sets some operons contained tRNA genes (tRNAala, tRNAile or tRNAglu), whereas others had sequence blocks such as VS2 (S. aureus) or rsl (E. coli)]. Q Analysis of the ISR sequence from E. faecalis and E. faecium showed that there was more interspecies than intraspecies variation (both in DNA sequence and in the presence or absence of blocks). Dot matrix analysis of the sequence blocks in the nine rrn ISRs from S. aureus showed that there was significant homology between VS2 and VS5/VS6. Furthermore, repeat motifs with only A or T were present in higher copy numbers in VS5/VS6 than in VS2. Since these sequence blocks (VS2 and VS5-VS6) are related, intragenic evolution resulting in AT expansion may have occurred between these two regions. A model is proposed that postulates a role for recombination and AT-expansion in intra-genomic ISR variations. This process may represent a general mechanism of concerted evolution for bacterial ISR rearrangements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号