首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced potency of bivalent small molecule gp41 inhibitors
Authors:Vladimir Sofiyev  Hardeep Kaur  Beth A. Snyder  Priscilla A. Hogan  Roger G. Ptak  Peter Hwang  Miriam Gochin
Affiliation:1. Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, United States;2. Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94143, United States;3. Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, United States;4. Department of Biophysics and Biochemistry, University of California San Francisco, CA 94143, United States
Abstract:Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40–60 times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.
Keywords:HIV-1 gp41  Hydrophobic pocket  Fusion inhibition  Peptidomimetic inhibitors  Bivalent inhibitors  Fluorescence  Surface plasmon resonance  Kinetics  Cooperativity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号