首页 | 本学科首页   官方微博 | 高级检索  
     


COMPARATIVE STUDY ON THE PHOTOSYNTHETIC PROPERTIES OF PRASIOLA (CHLOROPHYCEAE) AND NOSTOC (CYANOPHYCEAE) FROM ANTARCTIC AND NON‐ANTARCTIC SITES1
Authors:Makiko Kosugi  Yuya Katashima  Shimpei Aikawa  Yukiko Tanabe  Sakae Kudoh  Yasuhiro Kashino  Hiroyuki Koike  Kazuhiko Satoh
Affiliation:1. Graduate School of Life Science, University of Hyogo, 3‐2‐1 Kohto, Akou‐gun, Kamigori‐cho, Hyogo 678‐1297, Japan;2. National Institute of Polar Research, 10‐3 Midori‐cho, Tachikawa, Tokyo 190‐8518, Japan;3. National Institute of Polar Research, 10‐3 Midori‐cho, Tachikawa, Tokyo 190‐8518, Japan Department of Polar Science, The Graduate University for Advanced Studies, 10‐3 Midori‐cho, Tachikawa, Tokyo 190‐8518, Japan;4. Author for correspondence: e‐mail .;5. Present address: Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1‐13‐27 Kasuga, Bunkyo‐ku, Tokyo 112‐8551, Japan.
Abstract:The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and on the Antarctic continent. The terrestrial green alga Prasiola crispa (Lightf.) Kütz. is also distributed in Antarctica. These two species need to acclimate to the severe Antarctic climate including low ambient temperature and desiccation under strong light conditions. To clarify this acclimation process, the physiological characteristics of the photosynthetic systems of these two Antarctic terrestrial organisms were assessed. The relative rate of photosynthetic electron flow in N. commune collected in Japan and in Antarctica reached maxima at 900 and 1,100 μmol photons · m?2 · s?1, respectively. The difference seemed to reflect the presence of high amounts of UV‐absorbing substances within the Antarctic cyanobacterium. On the other hand, the optimal temperatures for photosynthesis at the two locations were 30°C–35°C and 20°C–25°C, respectively. This finding suggested a decreased photosynthetic thermotolerance in the Antarctic strain. P. crispa exhibited desiccation tolerance and dehydration‐induced quenching of PSII fluorescence. Re‐reduction of the photooxidized PSI reaction center, P700, was also inhibited at fully dry states. Photosynthetic electron flow in P. crispa reached a maximum at 20°C–25°C and at a light intensity of 700 μmol photons ? m?2 ? s?1. Interestingly, the osmolarity of P. crispa cells suggested that photosynthesis is performed using water absorbed in a liquid form rather than water absorbed from the air. Overall, these data suggest that these two species have acclimated to optimally photosynthesize under conditions of the highest light intensity and the highest temperature for their habitat in Antarctica.
Keywords:Antarctica  Nostoc commune  optimum light intensity  optimum temperature  photosynthetic activity  Prasiola crispa
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号