首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytochrome P450 binding studies of novel tacrine derivatives: Predicting the risk of hepatotoxicity
Authors:Alanna McEneny-King  Wesseem Osman  Andrea N Edginton  Praveen PN Rao
Institution:School of Pharmacy, Health Sciences Campus, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
Abstract:The 1,2,3,4-tetrahydroacridine derivative tacrine was the first drug approved to treat Alzheimer’s disease (AD). It is known to act as a potent cholinesterase inhibitor. However, tacrine was removed from the market due to its hepatotoxicity concerns as it undergoes metabolism to toxic quinonemethide species through the cytochrome P450 enzyme CYP1A2. Despite these challenges, tacrine serves as a useful template in the development of novel multi-targeting anti-AD agents. In this regard, we sought to evaluate the risk of hepatotoxicity in a series of C9 substituted tacrine derivatives that exhibit cholinesterase inhibition properties. The hepatotoxic potential of tacrine derivatives was evaluated using recombinant cytochrome (CYP) P450 CYP1A2 and CYP3A4 enzymes. Molecular docking studies were conducted to predict their binding modes and potential risk of forming hepatotoxic metabolites. Tacrine derivatives compound 1 (N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) and 2 (6-chloro-N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) which possess a C9 3,4-dimethoxybenzylamino substituent exhibited weak binding to CYP1A2 enzyme (1, IC50 = 33.0 µM; 2, IC50 = 8.5 µM) compared to tacrine (CYP1A2 IC50 = 1.5 µM). Modeling studies show that the presence of a bulky 3,4-dimethoxybenzylamino C9 substituent prevents the orientation of the 1,2,3,4-tetrahydroacridine ring close to the heme-iron center of CYP1A2 thereby reducing the risk of forming hepatotoxic species.
Keywords:Cholinesterase inhibitors  Tacrine  Hepatotoxicity  Cytochrome P450  CYP1A2  CYP3A4  Molecular docking  3  4-Dimethoxybenzylamino
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号