首页 | 本学科首页   官方微博 | 高级检索  
     


Investigating somatic aneuploidy in the brain: why we need a new model
Authors:Jimi?L.?Rosenkrantz,Lucia?Carbone
Affiliation:1.Department of Molecular and Medical Genetics,Oregon Health and Science University,Portland,USA;2.Department of Medicine,Oregon Health and Science University,Portland,USA;3.Knight Cardiovascular Institute,Oregon Health and Science University,Portland,USA;4.Division of Neuroscience, Primate Genetics Section,Oregon National Primate Research Center,Beaverton,USA
Abstract:The steady occurrence of DNA mutations is a key source for evolution, generating the genomic variation in the population upon which natural selection acts. Mutations driving evolution have to occur in the oocytes and sperm in order to be transmitted to the next generation. Through similar mechanisms, mutations also accumulate in somatic cells (e.g., skin cells, neurons, lymphocytes) during development and adult life. The concept that somatic cells can collect new mutations with time suggests that we are a mosaic of cells with different genomic compositions. Particular attention has been recently paid to somatic mutations in the brain, with a focus on the relationship between this phenomenon and the origin of human diseases. Given this progressive accumulation of mutations, it is likely that an increased load of somatic mutations is present later in life and that this could be associated with late-life diseases and aging. In this review, we focus on a particular type of mutation: the loss and/or gain of whole chromosomes (i.e., aneuploidy) caused by errors in chromosomes segregation in neurons and glia. Currently, it is hard to grasp the functional impact of somatic mutation in the brain because we lack reliable estimates of the proportion of aneuploid cells in the normal brain across different ages. Here, we revisit the key studies that attempted to quantify the proportion of aneuploid cells in both normal and diseased brains and highlight the deep inconsistencies among the different studies done in the last 15 years. Finally, our review highlights several limitations of studies performed in human and rodent models and explores a possible translational role for non-human primates.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号