首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The squamous cell carcinoma antigen 2 inhibits the cysteine proteinase activity of a major mite allergen, Der p 1
Authors:Sakata Yasuhisa  Arima Kazuhiko  Takai Toshiro  Sakurai Wataru  Masumoto Kiyonari  Yuyama Noriko  Suminami Yoshinori  Kishi Fumio  Yamashita Tetsuji  Kato Takeshi  Ogawa Hideoki  Fujimoto Kazuma  Matsuo Yo  Sugita Yuji  Izuhara Kenji
Institution:Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Japan.
Abstract:The squamous cell carcinoma antigens 1 (SCCA1) and SCCA2 belong to the ovalbumin-serpin family. Although SCCA1 and SCCA2 are closely homologous, these two molecules have distinct properties; SCCA1 inhibits cysteine proteinases such as cathepsin K, L, and S, whereas SCCA2 inhibits serine proteinases such as cathepsin G and human mast cell chymase. Although several intrinsic target proteinases for SCCA1 and SCCA2 have been found, the biological roles of SCCA1 and SCCA2 remain unknown. A mite allergen, Der p 1, is one of the most immunodominant allergens and also acts as a cysteine proteinase probably involved in the pathogenesis of allergic diseases. We have recently shown that both SCCA1 and SCCA2 are induced by two related Th2-type cytokines, IL-4 and IL-13, in bronchial epithelial cells and that SCCA expression is augmented in bronchial asthma patients. In this study, we explored the possibility that SCCA proteins target Der p 1, and it turned out that SCCA2, but not SCCA1, inhibited the catalytic activities of Der p 1. We furthermore analyzed the inhibitory mechanism of SCCA2 on Der p 1. SCCA2 contributed the suicide substrate-like mechanism without formation of a covalent complex, causing irreversible impairment of the catalytic activity of Der p 1, as SCCA1 does on papain. In addition, resistance to cleavage by Der p 1 also contributed to the inhibitory mechanism of SCCA2. These results suggest that SCCA2 acts as a cross-class serpin targeting an extrinsic cysteine proteinase derived from house dust mites and that it may have a protective role against biological reactions caused by mites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号