首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Visual detection of specific, native interactions between soluble and microbead-tethered alpha-helices from membrane proteins.
Authors:Wimley" target="_blank">W C AshishWimley
Institution:Department of Biochemistry, SL43, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA.
Abstract:Using peptides tethered to polymer microbeads, we have developed a technique for measuring the interactions between the transmembrane alpha-helices of membrane proteins and for screening combinatorial libraries of peptides for members that interact with specific helices from membrane proteins. The method was developed using the well-characterized homodimerization sequence of the membrane-spanning alpha-helix from the erythrocyte membrane protein glycophorin A (GPA). As a control, we also tested a variant with a dimer-disrupting alteration of a critical glycine residue to leucine. To test for detectable, native interactions between detergent-solubilized and microbead-tethered alpha-helices, we incubated fluorescent dye-labeled GPA analogues in sodium dodecyl sulfate solution with microbeads that contained covalently attached GPA analogues. When the dye-labeled peptide in solution and the bead-tethered peptide both contained the native glycophorin A sequence, the microbeads readily accumulated the dye through lateral peptide-peptide interactions and were visibly fluorescent under UV light. When either the peptide in solution or the peptide attached to the beads contained the glycine to leucine change, the beads did not accumulate any dye. The usefulness of this method for screening tethered peptide libraries was tested by incubating dye-labeled, native sequence peptides in detergent solution with a few native sequence beads plus an excess of beads containing the variant glycine to leucine sequence. When the dye-labeled peptide in solution was present at a concentration of > or =2 microM, the few native sequence beads were visually distinguishable from the others because of their bright fluorescence. Using this model system, we have shown that it is possible to visually detect specific, native interactions between alpha-helices from membrane proteins using peptides tethered to polymer microbeads. It will thus be possible to use this method to measure the specific lateral interactions that drive the folding and organization of membrane proteins and to screen combinatorial libraries of peptides for members that interact with them.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号