首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Vinyl sulfone bifunctional derivatives of DOTA allow sulfhydryl- or amino-directed coupling to antibodies. Conjugates retain immunoreactivity and have similar biodistributions.
Authors:Lin Li  Shih-Wa Tsai  Anne-Line Anderson  David A Keire  Andrew A Raubitschek  John E Shively
Institution:Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
Abstract:We have synthesized a bifunctional vinyl sulfone-cysteineamido derivative of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) that can be conjugated to the sulfhydryls of mildly reduced recombinant antibody (chimeric anti-CEA antibody cT84.66) at pH 7 or to the amino groups of lysine residues at pH 9. The conjugation is sulfhydryl specific at pH 7 (case 1), and amino specific at pH 9 (case 2) as long as the antibody has no free sulhydryl groups. At a molar ratio of 50 BCA (bifunctional chelating agent) to mAb, the number of chelates conjugated is 0.8 for case 1, and 4.6 for case 2. The resulting conjugates can be radiolabeled with (111)In to high specific activity (5 mCi/mg) with high efficiency (>95%) at 43 degrees C in 60 min. The radiolabeled conjugates retained >95% immunoreactivity and are stable in serum containing 1mM DTPA over 3 d. When the radiolabeled conjugates were injected into nude mice bearing LS174T human colon tumor xenografts, over 40% ID/g accumulated in tumors during the period 24-72h. Tumor-to-blood ratios were 4.5, 3.5, and 2.5 for the sulfhydryl coupled conjugate at 24, 48, and 72 h, respectively, and 2.7, 2.5, and 2.3 for the amino-coupled conjugate at the same time points. For other organs the biodistributions were nearly identical whether the conjugates were attached via sulfhydryl or amino groups. These novel BCAs are easy to synthesize, offer versatile conjugation options, and give equivalent biodistributions that result in high tumor uptake and good tumor-to-blood ratios.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号