首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of polyhydroxyalkanoates from styrene by <Emphasis Type="Italic">Enterobacter</Emphasis> spp. isolated from polluted environment
Authors:Arooj Arshad  Bisma Ashraf  Iftikhar Ali  Nazia Jamil
Institution:1.Department of Microbiology and Molecular Genetics,University of the Punjab, Quaid-e-Azam Campus,Lahore,Pakistan
Abstract:

Background

Styrene and its metabolites are known to have serious adverse effects on human health and hence, strategies to prevent its release, eradicate it from the environment, and understand its route of degradation are being considered.

Methods

A total of 18 strains were isolated from 4 samples of diesel contaminated soils. Among them 5 strains were selected for their ability to degrade styrene and use it as a sole carbon source to produce PHA. These strains were identified as Enterobacter spp. on the basis of 16S rRNA gene sequencing. Bacteria were screened for their ability to produce PHA by utilizing glucose and styrene as a carbon sources. Screening for PHA production was done by Nile blue A, Sudan black B, and phase contrast microscopy and the selected 3 strains showed positive results. Growth kinetics along with time profiling of PHA was performed for glucose and styrene as carbon sources.

Results

PHA extraction was done at equal intervals of 12 h by sodium hypochlorite method which showed that these strains accumulate maximum amount of PHA after 48 h in glucose (30.60%). FTIR analysis of PHA was done which revealed homopolymer PHB and copolymer (PHB-co-PHV) production in strains by utilizing glucose and styrene. Gas chromatography mass spectrometry was carried out to identify the metabolites produced by bacterial strains grown on styrene. Metabolites of styrene degradation included propyne and phenylalanine. Genomic DNA isolation was carried out to amplify phaC gene which encodes PHA synthase enzyme.

Conclusions

The conversion of styrene to polyhydroxyalkanoates (PHA) provides a new and unique link between an aromatic environmental pollutant and aliphatic PHA accumulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号