首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dispersion and bilayer interaction of single-walled carbon nanotubes modulated by covalent and noncovalent PEGylation
Authors:Hwankyu Lee
Institution:Department of Chemical Engineering, Dankook University, Yongin448-701, South Korea
Abstract:Single-walled carbon nanotubes (SWNTs) covalently functionalised with polyethylene glycol (PEG) or noncovalently coated with PEGylated lipids were simulated in water and in lipid bilayers at different PEG sizes and grafting densities using coarse-grained force fields. Starting with the random position of three SWNT–PEG complexes in water, larger PEGs at higher grafting densities more significantly inhibit the aggregation of SWNTs because of larger radii of gyration and hydrodynamic radii of the SWNT–PEG complex, which influence the thickness and the wrapping extent of PEG layer. In particular, PEG-functionalised SWNTs, where PEGs are evenly grafted along the SWNT, disperse, while PEG-coated SWNTs aggregate because SWNTs are less covered by randomly adsorbed PEGylated lipids. Simulations of SWNT–PEGs in lipid bilayers show that PEG (Mw = 550 and 2000)-functionalised SWNTs bind to the bilayer surface but do not insert into the bilayer, while PEG-coated SWNTs insert into the bilayer because PEGylated lipids detach from SWNTs and mix with bilayer lipids. These findings support recent experiments at the same PEG size and density, which suggested that PEG-coated SWNTs may form bundles and thus cannot be easily excreted through the renal route, while PEG-functionalised SWNTs may remain individual and thus show more renal excretion.
Keywords:PEGylated SWNT  interparticle aggregation  toxicity  molecular dynamics simulation  hydrodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号