首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The evolutionary stability of automimicry
Authors:Svennungsen Thomas Owens  Holen Oistein Haugsten
Institution:Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway. t.o.svennungsen@bio.uio.no
Abstract:Internal defences such as toxins cannot be detected from a distance by a predator, and are likely to be costly to produce and maintain. Populations of well-defended prey may therefore be vulnerable to invasion from rare 'cheater' mutants that do not produce the toxin themselves but obtain some protection from their resemblance to their better defended conspecifics (automimicry). Although it is well established that well-defended and weakly defended morphs may coexist stably in protected dimorphisms, recent theoretical work suggests that such dimorphisms would not be resistant to invasion by novel mutants with defence levels intermediate to those present. Given that most defences (including toxins) are likely to be continuous traits, this implies that automimicry may tend to be a transitory phenomenon, and thus less likely to explain variation in defence levels in nature. In contrast to this, we show that automimicry can also be evolutionarily stable for continuous traits, and that it may evolve under a wide range of conditions. A recently developed geometric method allows us to determine directly from a trade-off curve whether an evolutionarily stable defence dimorphism is at all possible, and to make some qualitative inferences about the ecological conditions that may favour it.
Keywords:automimicry  predation  alternative strategies  secondary defences  evolutionary game theory  polymorphism
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号