首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion
Authors:Xiulong Shen  Audrius Kilikevicius  Daniel O&#x;Reilly  Thazha P Prakash  Masad J Damha  Frank Rigo  David R Corey
Institution:1. Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States;2. Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States;3. Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada;4. Ionis Pharmaceuticals, Carlsbad, CA 92010, United States
Abstract:Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. We previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here we test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.
Keywords:Friedreich's ataxia  Frataxin  Gene activation  ss-siRNAs  Antisense oligonucleotides
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号