首页 | 本学科首页   官方微博 | 高级检索  
     


Bacterial and Protozoal Communities and Fatty Acid Profile in the Rumen of Sheep Fed a Diet Containing Added Tannins
Authors:Valentina Vasta  David R. Yá?ez-Ruiz  Marcello Mele  Andrea Serra  Giuseppe Luciano  Massimiliano Lanza  Luisa Biondi  Alessandro Priolo
Affiliation:Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Via Valdisavoia 5, 95123 Catania, Italy,1. Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain,2. Dipartimento di Agronomia e Gestione dell''Agro-Ecosistema, Via del Borghetto 80, 56124 Pisa, Italy,3. Dottorato di Ricerca in Scienze delle Produzioni Animali, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy4.
Abstract:This study evaluated the effects of tannins on ruminal biohydrogenation (BH) due to shifts in the ruminal microbial environment in sheep. Thirteen lambs (45 days of age) were assigned to two dietary treatments: seven lambs were fed a barley-based concentrate (control group) while the other six lambs received the same concentrate with supplemental quebracho tannins (9.57% of dry matter). At 122 days of age, the lambs were slaughtered, and the ruminal contents were subjected to fatty acid analysis and sampled to quantify populations of Butyrivibrio fibrisolvens, which converts C18:2 c9-c12 (linoleic acid [LA]) to C18:2 c9-t11 (rumenic acid [RA]) and then RA to C18:1 t11 (vaccenic acid [VA]); we also sampled for Butyrivibrio proteoclasticus, which converts VA to C18:0 (stearic acid [SA]). Tannins increased (P < 0.005) VA in the rumen compared to the tannin-free diet. The concentration of SA was not affected by tannins. The SA/VA ratio was lower (P < 0.005) for the tannin-fed lambs than for the controls, suggesting that the last step of the BH process was inhibited by tannins. The B. proteoclasticus population was lower (−30.6%; P < 0.1), and B. fibrisolvens and protozoan populations were higher (+107% and +56.1%, respectively; P < 0.05) in the rumen of lambs fed the tannin-supplemented diet than in controls. These results suggest that quebracho tannins altered BH by changing ruminal microbial populations.The fatty acid profile of the meat and milk of ruminants is strongly affected by diet (2, 15). When ingested, the dietary polyunsaturated fatty acids (PUFA) undergo a process known as biohydrogenation (BH) carried out by ruminal microorganisms (20). During the BH of C18:2(n-6) (linoleic acid [LA]) and C18:3(n-3) (linolenic acid [LNA]) a number of C18:1 and C18:2 isomers are formed (6). The last step in the BH process leads to the formation of C18:0 (stearic acid [SA]). Among the intermediate products formed during this process, the isomer C18:2 c9t11 (rumenic acid [RA]) is active in preventing cancer in mammals (17). Only a small amount of the RA found in meat and milk originates during BH. It is produced to a larger extent in muscle and mammary glands from the desaturation of C18:1 t11 (vaccenic acid [VA], another intermediate of ruminal BH) by the action of Δ9-desaturase enzyme (41, 43).Ruminal BH is carried out mostly by bacteria belonging to the Butyrivibrio genus (38). Butyrivibrio fibrisolvens has the capacity to convert LA to RA and RA to VA, while Butyrivibrio proteoclasticus (previously classified as Clostridium proteoclasticum [35]) hydrogenates VA to SA (38, 39). According to Or-Rashid et al. (37), ruminal protozoa also play a role in BH by converting LA to RA. However, this issue is still controversial, as Devillard et al. (11) have reported that protozoa do not have the capability of hydrogenating LA. The proportion of BH intermediates in the rumen can vary depending on changes in ruminal microbial populations (7, 51). Changes in ruminal fatty acid profiles are also reflected in intramuscular fatty acid composition (48, 52).Tannins are phenolic compounds that are widespread in plants. When ingested by ruminants in large amounts, tannins can reduce the activity and the proliferation of ruminal microorganisms (34). Tannins from Lotus corniculatus (33) or from Acacia spp. (12) reduce the proliferation of B. proteoclasticus B316T and B. proteoclasticus P18, respectively. Durmic et al. (12) reported that VA increased and SA decreased when extracts from Acacia iteaphylla, which contains condensed tannins (1), were incubated in vitro with sheep ruminal fluid inoculated with B. fibrisolvens JW11 and B. proteoclasticus P18 strains. In two recent in vitro studies, the inclusion of tannins in fermentor systems containing bovine ruminal fluid inhibited the conversion of VA to SA, while no effect was detected on RA production (21, 47). These results have been also confirmed in vivo in the rumen of sheep fed a diet with 4.0% dry matter (DM) quebracho tannin (48). However, to date there is no in vivo study focusing on the effects of dietary tannins on the proliferation of the microorganisms involved in ruminal BH.We assessed whether dietary tannins may affect the BH pathway via changes in bacterial and protozoal ruminal populations. We gave particular emphasis to B. fibrisolvens and B. proteoclasticus. We also assayed the production of conjugated linoleic acids (CLAs) by linoleic acid isomerase (LA-I) enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号