首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genomic Content of Neisseria Species
Authors:Deborah M Tobiason  H Steven Seifert
Institution:Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
Abstract:The physical properties of most bacterial genomes are largely unexplored. We have previously demonstrated that the strict human pathogen Neisseria gonorrhoeae is polyploid, carrying an average of three chromosome copies per cell and only maintaining one pair of replication forks per chromosome (D. M. Tobiason and H. S. Seifert, PLos Biol. 4:1069-1078, 2006). We are following up this initial report to test several predictions of the polyploidy model of gonococcal chromosome organization. We demonstrate that the N. gonorrhoeae chromosomes exist solely as monomers and not covalently linked dimers, and in agreement with the monomer status, we show that distinct nucleoid regions can be detected by electron microscopy. Two different approaches to isolate heterozygous N. gonorrhoeae resulted in the formation of merodiploids, showing that even with more than one chromosome copy, these bacteria are genetically haploid. We show that the closely related bacterium Neisseria meningitidis is also polyploid, while the commensal organism Neisseria lactamica maintains chromosomes in single copy. We conclude that the pathogenic Neisseria strains are homozygous diploids.Bacteria are unicellular organisms that exhibit a multitude of shapes and sizes and exist in a wide range of environments. Despite the extreme diversity of capabilities and physiology evidenced by different bacterial species, most bacteria are assumed to conform to the enteric model of genomic organization, chromosomal replication, and genomic segregation during cell division exemplified by Escherichia coli. In contradiction to this limited view of bacterial genome biology, some bacterial species have their genome divided between multiple DNA elements (10), and some possess linear chromosomes (2, 19). A few bacterial species have been reported to carry multiple genome copies per cell (members of the genera Azotobacter, Borrelia, Buchnera, Deinococcus, Neisseria, and Epulopiscium), with copy number estimates ranging from two copies to thousands of copies per cell (1, 7, 17, 23, 25, 26, 34, 35, 39, 46). The exact number of genomes per cell has not been determined for most of these organisms, and the mechanisms for organizing polyploid genomes and segregating them during cell division remain to be determined. An exception is Deinococcus radiodurans, which has been shown to possess four complete chromosomes during exponential growth and up to 16 genomes within the stationary phase. The polyploid genomes of D. radiodurans have been proposed to assemble into a toroidal mass in the cell (29), but the validity of this finding has been questioned (11, 13, 49). There are few obvious commonalities between these polyploid organisms, except that some Neisseria, Deinococcus, and Borrelia species utilize homologous recombination to mediate specialized processes essential for the survival of these species. In addition, members of the Azotobacter, Buchnera, and Epulopiscium genera are obligate symbionts that do not possess a free-living stage, but the reasons why obligate symbionts would possess polyploid chromosomes are unknown.Neisseria gonorrhoeae and Neisseria meningitidis are the two pathogenic members of the Neisseria genus. N. gonorrhoeae is the sole causative agent of the disease gonorrhea, and N. meningitidis is the most common cause of bacterial meningitis in adolescents and young adults. One attribute that these human-specific pathogens use to coexist and evolve within humans lies in their capacity to antigenically vary and phase vary several outer membrane structures, including pili, Opa proteins, and the lipooligosaccharide (LOS) (12, 21). Variation of the Opa and LOS antigens is mediated by polynucleotide repeat variation that modulates expression of biosynthetic genes (40, 48). These changes in polynucleotide repeat sequences are mediated through slipped-strand mispairing that occurs during normal DNA replication and therefore would not obviously benefit from polyploidy. In contrast, pilin antigenic variation is a RecA-mediated gene conversion event (27), which could be aided by having two copies of all the recombining pilin loci within a single cell to facilitate the nonreciprocal transfer of pilin sequences. Therefore, we postulated that the presence of multiple genome copies per gonococcal cell may be required to facilitate these high-frequency gene conversion events. Analysis of gonococcal genome content by flow cytometry and fluorescent microscopy indicated that there existed greater than one genome equivalent of gonococcal DNA content per cell (46). Additionally, quantitative real-time PCR and genome microarray analysis measured a marker frequency pinpointing a single DNA replication event per round of cell division. On average, each coccal unit had three genome copies per cell, and a population of cells with a single genome equivalent per cell was never observed, even under conditions of slower growth. These observations predicted a model for gonococcal replication (Fig. (Fig.1)1) in which each coccal unit has a minimum of two chromosomes that replicate in unison to produce four chromosomes prior to cell division and the conclusion that this species is diploid.Open in a separate windowFIG. 1.Model of gonococcal DNA replication and chromosome segregation in a monococcus. The gonococcal chromosome is indicated by a dotted line. An antibiotic resistance (AbR) marker recombined into a gonococcal chromosome (solid line). At time zero minutes, DNA replication begins, and after 35 min, DNA replication is complete. Gonococcal cell division occurs after 60 min. In scenario I, homozygous chromosomes are segregated together. In scenario II, heterozygous bacteria are produced.Though the analysis of the genomic content has only been reported for the gonococcus, the genus Neisseria encompasses a number of pathogenic and commensal bacteria. N. meningitidis is the leading cause of bacterial meningitis worldwide and is asymptomatically carried in the human nasopharynx (47). Most of the Neisseria species are commensal organisms that inhabit the nasopharynx and rarely cause disease (24). The most extensively studied commensal Neisseria species, N. lactamica, shares extensive homology with the pathogenic Neisseriae species and also predominately resides in the human nasopharynx (31). Only the pathogenic neisseriae, N. gonorrhoeae and N. meningitidis, have been shown to undergo pilin antigenic variation (43). Since the polyploid nature of N. gonorrhoeae has been proposed to be required for pilin antigenic variation, N. meningitidis may also have multiple genome copies per cell. The genomic copy number of other Neisseria species and the putative relationship between genomic content and pathogenesis remain to be determined.In this work, we tested several predictions or models resulting from the observation that the gonococcus is polyploid. We confirmed that the chromosomes exist as separate molecules and show that the gonococcal nucleoids reside in discrete cellular regions. We confirm that these bacteria are genetically haploid, suggesting that chromosomal segregation mechanisms ensure a homozygous population. Finally, we show that the other pathogenic Neisseria species, N. meningitidis, is also polyploid, while a commensal Neisseria species, N. lactamica, is not. These studies show that polyploidy is correlated with Neisseria pathogenesis and suggest that this property has evolved to allow diploid chromosomes while maintaining the haploid status of these obligate human pathogens.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号