首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Swine Manure on Macrolide,Lincosamide, and Streptogramin B Antimicrobial Resistance in Soils
Authors:Zhi Zhou  Lutgarde Raskin  Julie L. Zilles
Affiliation:Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801
Abstract:Current agricultural practices involve inclusion of antimicrobials in animal feed and result in manure containing antimicrobials and antimicrobial-resistant microorganisms. This work evaluated the effects of land application of swine manure on the levels of tetracycline, macrolide, and lincosamide antimicrobials and on macrolide, lincosamide, and streptogramin B (MLSB) resistance in field soil samples and laboratory soil batch tests. MLSB and tetracycline antimicrobials were quantified after solid-phase extraction using liquid chromatography-tandem mass spectrometry. The prevalence of the ribosomal modification responsible for MLSB resistance in the same samples was quantified using fluorescence in situ hybridization. Macrolide antimicrobials were not detected in soil samples, while tetracyclines were detected, suggesting that the latter compounds persist in soil. No significant differences in ribosomal methylation or presumed MLSB resistance were observed when amended and unamended field soils were compared, although a transient (<20-day) increase was observed in most batch tests. Clostridium cluster XIVa accounted for the largest fraction of resistant bacteria identified in amended soils. Overall, this study did not detect a persistent increase in the prevalence of MLSB resistance due to land application of treated swine manure.Treated swine manure contains substantial levels of both antimicrobial-resistant microorganisms (10, 26) and antimicrobials (7, 18, 33). Land application of manure could therefore contribute to public health risks associated with the increasing prevalence of antimicrobial resistance in pathogens both directly, through the dissemination of antimicrobial-resistant pathogens, and indirectly, through the introduction of and selection for antimicrobial resistance genes. Because limited data are available, this connection is largely a theoretical connection, particularly for the indirect effects. However, a recent retrospective study of antimicrobial resistance in soil did support the hypothesis that there is an environmental connection by documenting that there was an increase in the abundance of antibiotic resistance genes in samples collected from 1940 to 2008, during which time antimicrobial production increased dramatically (12).The fate of antimicrobials in amended soils is a function of their sorptive properties, the soil characteristics, and the potential for abiotic and biotic degradation of the antimicrobials. Tetracyclines tend to adsorb to soil (21, 23), which leads to persistence in amended soils (3, 7, 11), although they are also susceptible to degradation (3, 4). The macrolide tylosin frequently is not detected (3, 4, 7, 11, 33) and is likely rapidly degraded in manure and soils (8, 16, 24). However, persistence of tylosin for several months in amended soil has also been reported (6). The differences in degradation rates may be caused by differences in soil characteristics, manure-to-soil ratios, and/or microbial communities (15, 16, 21).Addition of both antimicrobials and antimicrobial-resistant microorganisms might be expected to result in an increase in the levels of resistance. However, most studies have not shown that there is a long-term increase in antimicrobial resistance due to land application of manure at agronomically prescribed rates (5, 9, 26). Transient (i.e., <45-day) increases have been reported (9, 26), as have elevated levels of resistance at sites near manure piles (5). In contrast, another report showed that there were significantly higher levels of tylosin resistance in soils that received animal manure from operations that used subtherapeutic levels of antimicrobials than in soils at sites where there was no use of subtherapeutic levels of antimicrobials (19). One limitation of these studies was their use of culture-based methods to quantify resistance; the results may not be representative of the entire microbial community. The molecular methods that have been used to quantify resistance also have limitations, and the most serious limitation is the inability of these methods to examine the full diversity of known and unknown resistance genes. The previous molecular studies of the impact of land application on resistance were largely restricted to qualitative analyses (10, 25), although quantitative PCR methods for analysis of tetracycline resistance genes have recently been used for cattle and swine lagoons (14, 20). In a retrospective soil study, Knapp et al. (12), who also used quantitative PCR, found multiple site differences, which made it difficult to evaluate the impact of manure application. However, the site with the highest manure application rate did not show the highest levels of antimicrobial resistance, suggesting that there are other factors that have a greater influence on the prevalence of resistance.In the present study, a variation of the fluorescence in situ hybridization (FISH) technique was used to assess the impact of land application of swine manure on the levels of macrolide-lincosamide-streptogramin B (MLSB) resistance. Although the MLSB antimicrobials are chemically distinct, methylation or mutation of a single base of the 23S rRNA prevents binding and results in cross-resistance to all three classes (29). The prevalence of MLSB antimicrobial resistance in the microbial community can therefore be quantified indirectly by hybridization of an oligonucleotide probe to unmethylated, MLSB-sensitive ribosomes, using either membrane hybridization (1, 10) or FISH (31). These methods do not require culturing or a comprehensive knowledge of the diversity of resistance gene sequences, but they do not detect resistance to specific antimicrobials that results from other mechanisms, such as macrolide efflux.This study focused on evaluating the impact of land application of swine manure on the levels of antimicrobials and the prevalence of antimicrobial resistance in the soil environment. The concentrations of tetracycline, macrolide, and lincosamide antimicrobials and the prevalence of MLSB resistance were compared for field soils that received no manure, swine manure from farms that did not use antimicrobials (referred to below as organic farms), and swine manure from conventional farms to determine whether land application affects the levels of antimicrobials and MLSB resistance. The effects of addition of manure, antimicrobials (lincomycin and chlortetracycline), and MLSB-resistant microorganisms on the prevalence of MLSB resistance were also compared using soil batch tests.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号