首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia
Authors:Salome Antolin  Johannes Reisert  Hugh R Matthews
Institution:1.Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, England, UK;2.Monell Chemical Senses Center, Philadelphia, PA 19104
Abstract:In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide–gated channels in the ciliary membrane enabling Ca2+ influx. The ensuing elevation of the intraciliary Ca2+ concentration opens Ca2+-activated Cl channels, which mediate an excitatory Cl efflux from the cilia. In order for the response to terminate, the Cl channel must close, which requires that the intraciliary Ca2+ concentration return to basal levels. Hitherto, the extrusion of Ca2+ from the cilia has been thought to depend principally on a Na+–Ca2+ exchanger.In this study, we show using simultaneous suction pipette recording and Ca2+-sensitive dye fluorescence measurements that in fire salamander ORNs, withdrawal of external Na+ from the solution bathing the cilia, which incapacitates Na+–Ca2+exchange, has only a modest effect on the recovery of the electrical response and the accompanying decay of intraciliary Ca2+ concentration. In contrast, exposure of the cilia to vanadate or carboxyeosin, a manipulation designed to block Ca2+-ATPase, has a substantial effect on response recovery kinetics. Therefore, we conclude that Ca2+-ATPase contributes to Ca2+ extrusion in ORNs, and that Na+–Ca2+exchange makes only a modest contribution to Ca2+ homeostasis in this species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号