首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genotype-Temperature Interaction in the Regulation of Development,Growth, and Morphometrics in Wild-Type,and Growth-Hormone Transgenic Coho Salmon
Authors:Mare L?hmus  L Fredrik Sundstr?m  Mats Bj?rklund  Robert H Devlin
Institution:1. Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada.; 2. Section for Environment and Biosecurity, Department for Chemistry, Environment and Feed Hygiene, National Veterinary Institute, Uppsala, Sweden.; 3. Animal Ecology/Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.;University of Alabama, United States of America
Abstract:

Background

The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e.g. most fishes), are particularly influenced by surrounding temperatures.

Methodology/Principal Findings

By comparing the development and growth of two genotypes of coho salmon (wild-type and transgenic with greatly enhanced growth hormone production) at six different temperatures, ranging between 8° and 18°C, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection. Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival rates of both genotypes occurred at 12°C. At lower temperatures, eggs containing embryos with enhanced GH production hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16°C. GH transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves.

Conclusions

Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic fish would be expected to differentially respond and adapt to shifts in environmental conditions compared with wild type, influencing their ability to survive and interact in ecosystems. Understanding these relationships would assist environmental risk assessments evaluating potential ecological effects.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号