首页 | 本学科首页   官方微博 | 高级检索  
     


Mevalonate-suppressive dietary isoprenoids for bone health
Authors:Huanbiao Mo  Hoda Yeganehjoo  Anureet Shah  Warren K. Mo  Ima Nirwana Soelaiman  Chwan-Li Shen
Affiliation:1. Department of Nutrition and Food Sciences, Texas Woman''s University, Denton, TX 76204, USA;2. Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203, USA;3. Department of Pharmacology, National University of Malaysia (UKM), Kuala Lumpur, Malaysia;4. Department of Pathology, Texas Tech University Health Sciences Center, BB 198, Lubbock, TX 79430-9097, USA
Abstract:Osteoclastogenesis and osteoblastogenesis, the balancing acts for optimal bone health, are under the regulation of small guanosine triphosphate-binding proteins (GTPases) including Ras, Rac, Rho and Rab. The activities of GTPases require post-translational modification with mevalonate-derived prenyl pyrophosphates. Mevalonate deprivation induced by competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (e.g., statins) prevents the activation of GTPases, suppresses the expression of the receptor for activation of nuclear factor kappa B (NFκB) ligand (RANKL) and activation of NFκB and, consequently, inhibits osteoclast differentiation and induces osteoclast apoptosis. In contrast, statin-mediated inactivation of GTPases enhances alkaline phosphatase activity and the expression of bone morphogenetic protein-2, vascular epithelial growth factor, and osteocalcin in osteoblasts and induces osteoblast proliferation and differentiation. Animal studies show that statins inhibit bone resorption and increase bone formation. The anabolic effect of statins and other mevalonate pathway-suppressive pharmaceuticals resembles the anti-osteoclastogenic and bone-protective activities conferred by dietary isoprenoids, secondary products of plant mevalonate metabolism. The tocotrienols, vitamin E molecules with HMG CoA reductase-suppressive activity, induce mevalonate deprivation and concomitantly suppress the expression of RANKL and cyclooxygenase-2, the production of prostaglandin E2 and the activation of NFκB. Accordingly, tocotrienols inhibit osteoclast differentiation and induce osteoclast apoptosis, impacts reminiscent of those of statins. In vivo studies confirm the bone protective activity of tocotrienols at nontoxic doses. Blends of tocotrienols, statins and isoprenoids widely found in fruits, vegetables, grains, herbs, spices, and essential oils may synergistically suppress osteoclastogenesis while promoting osteoblastogenesis, offering a novel approach to bone health that warrants clinical studies.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号