首页 | 本学科首页   官方微博 | 高级检索  
     


The Genome Sequence of Psychrobacter arcticus 273-4, a Psychroactive Siberian Permafrost Bacterium,Reveals Mechanisms for Adaptation to Low-Temperature Growth
Authors:Héctor L. Ayala-del-Río  Patrick S. Chain  Joseph J. Grzymski  Monica A. Ponder  Natalia Ivanova  Peter W. Bergholz  Genevive Di Bartolo  Loren Hauser  Miriam Land  Corien Bakermans  Debora Rodrigues  Joel Klappenbach  Dan Zarka  Frank Larimer  Paul Richardson  Alison Murray  Michael Thomashow  James M. Tiedje
Affiliation:Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1325,1. Department of Biology, University of Puerto Rico at Humacao, Humacao, Puerto Rico 00791,2. Lawrence Livermore National Laboratory, Livermore, California,3. Desert Research Institute, Reno, Nevada,4. Joint Genome Institute, Walnut Creek, California,5. Genome Analysis and Systems Modeling, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee6.
Abstract:Psychrobacter arcticus strain 273-4, which grows at temperatures as low as −10°C, is the first cold-adapted bacterium from a terrestrial environment whose genome was sequenced. Analysis of the 2.65-Mb genome suggested that some of the strategies employed by P. arcticus 273-4 for survival under cold and stress conditions are changes in membrane composition, synthesis of cold shock proteins, and the use of acetate as an energy source. Comparative genome analysis indicated that in a significant portion of the P. arcticus proteome there is reduced use of the acidic amino acids and proline and arginine, which is consistent with increased protein flexibility at low temperatures. Differential amino acid usage occurred in all gene categories, but it was more common in gene categories essential for cell growth and reproduction, suggesting that P. arcticus evolved to grow at low temperatures. Amino acid adaptations and the gene content likely evolved in response to the long-term freezing temperatures (−10°C to −12°C) of the Kolyma (Siberia) permafrost soil from which this strain was isolated. Intracellular water likely does not freeze at these in situ temperatures, which allows P. arcticus to live at subzero temperatures.Temperature is one of the most important parameters that determine the distribution and extent of life on earth, and it does this by affecting cell structure and function. High temperatures break covalent bonds and ionic interactions between molecules, inactivating proteins and disrupting cell structures. Low temperatures reduce biochemical reaction rates and substrate transport and induce the formation of ice that damages cell structures. Not surprisingly, an organism''s compatibility with the temperature of its habitat is ultimately determined by its underlying genetic architecture.The strong emphasis in research on mesophile biology (temperatures in the 20°C to 37°C range) has given us a misimpression of the importance of cold on earth. However, 70% of the Earth''s surface is covered by oceans with average temperatures between 1°C and 5°C (11), 20% of the Earth''s terrestrial surface is permafrost (47), and a larger portion of the surface undergoes seasonal freezing, making our planet a predominantly cold environment. Hence, cold adaptation in the microbial world should be expected (55).Permafrost is defined as soils or sediments that are continuously exposed to a temperature of 0°C or less for at least 2 years (44). Permafrost temperatures range from −10°C to −20°C in the Arctic and from −10°C to −65°C in the Antarctic, and permafrost has low water activity, often contains small amounts of carbon (0.85 to 1%), and is subjected to prolonged exposure to damaging gamma radiation from 40K in soil minerals (49). Liquid water occurs as a very thin, salty layer surrounding the soil particles in the frozen layer. Despite the challenges of the permafrost, a variety of microorganisms successfully colonize this environment, and many microorganisms have been isolated from it (54, 70). The bacterial taxa most frequently isolated from the Kolyma permafrost of northeast Siberia include Arthrobacter, Exiguobacterium, Flavobacterium, Sphingomonas, and Psychrobacter (71). Rhode and Price (56) proposed that microorganisms can survive in frozen ice for very long periods due to the very thin film of water surrounding each cell that serves as a reserve of substrates. Permafrost is a more favorable environment than ice as a result of its heterogeneous soil particles and larger reservoirs of nutrients.The genus Psychrobacter comprises a group of Gram-negative, rod-shaped, heterotrophic bacteria, and many Psychrobacter species are capable of growth at low temperatures. Members of this genus can grow at temperatures between −10°C and 42°C, and they have frequently been isolated from various cold environments, including Antarctic sea ice, ornithogenic soil and sediments, the stomach contents of Antarctic krill (Euphausia), deep seawater, and permafrost (9, 36, 57, 70, 71, 76; http://www.bacterio.cict.fr/p/psychrobacter.html). Psychrobacter arcticus 273-4 is a recently described species (4) that was isolated from a 20,000- to 30,000-year-old continuously frozen permafrost horizon in the Kolyma region in Siberia that was not exposed to temperatures higher than 4°C during isolation (70). This strain, the type strain of the species, grows at temperatures ranging from −10°C to 28°C, has a generation time of 3.5 days at −2.5°C, exhibits excellent long-term survival under freezing conditions, and has temperature-dependent physiological modifications in membrane composition and carbon source utilization (50). The fact that Psychrobacter has been found to be an indicator genus for permafrost and other polar environments (66) suggests that many of its members are adapted to low temperatures and increased levels of osmotica and have evolved molecular-level changes that aid survival at low temperatures.Early studies on cold adaptation in microorganisms revealed physiological strategies to deal with low temperatures, such as changes in membrane saturation, accumulation of compatible solutes, and the presence of cold shock proteins (CSPs) and many other proteins with general functions (62). However, many of the studies were conducted with mesophilic microorganisms, which limits the generality of the conclusions. We addressed the question of cold adaptation by studying microorganisms isolated from subzero environments using physiologic and genomic methods. We chose P. arcticus as our model because of its growth at subzero temperatures and widespread prevalence in permafrost. This paper focuses on the more novel potential adaptations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号