首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex
Authors:Alexey Shapiguzov  Xin Chai  Geoffrey Fucile  Paolo Longoni  Lixin Zhang  Jean-David Rochaix
Institution:Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland (A.S.); and Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China (X.C., G.F., P.L., L.Z., J.-D.R.)
Abstract:Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex.Photosynthetic organisms are subjected to constant changes in light quality and quantity and need to adapt to these changes in order to optimize, on the one hand, their photosynthetic yield, and to minimize photo-oxidative damage on the other. The photosynthetic electron transfer chain consists of photosystem II (PSII), the plastoquinone (PQ) pool, the cytochrome b6f complex (Cyt b6f), plastocyanin, and photosystem I (PSI). All of these complexes and components are integrated or closely associated with the thylakoid membrane. The two antenna systems of PSII and PSI capture and direct the light excitation energy to the corresponding reaction centers in which a chlorophyll dimer is oxidized and charge separation occurs across the thylakoid membrane. These processes lead to the onset of electron flow from water on the donor side of PSII to ferredoxin on the acceptor side of PSI coupled with proton translocation across the thylakoid membrane. In order to sustain optimal electron flow along this electron transfer chain, the redox poise needs to be maintained under changing environmental conditions. Several mechanisms have evolved for the maintenance of this redox balance. In the case of over-reduction of the acceptor side of PSI, excess electrons can reduce molecular oxygen through the Mehler reaction to superoxide, which is then converted to hydrogen peroxide by a plastid superoxide dismutase and ultimately to water by a peroxidase (Asada, 2000). Over-reduction of the PQ pool can be alleviated by PTOX, the plastid terminal oxidase responsible for oxidizing PQH2 to form hydrogen peroxide, which is subsequently converted to water (Carol et al., 1999; Cournac et al., 2000; Wu et al., 1999).In addition to these electron sinks that prevent the over-reduction of the electron transfer chain, the photosynthetic apparatus is able to maintain the redox poise of the PQ pool by readjusting the relative cross sections of the light harvesting systems of PSII and PSI upon unequal excitation of the two photosystems. This readjustment can occur both in the short term through state transitions and in the long term by changing the stoichiometry between PSII and PSI (Bonaventura and Myers, 1969; Murata, 1969; Pfannschmidt, 2003). State transitions occur because of perturbations of the redox state of the PQ pool due to unequal excitation of PSII and PSI, limitations in electron acceptors downstream of PSI, and/or in CO2 availability. Excess excitation of PSII relative to PSI leads to reduction of the PQ pool and thus favors the docking of PQH2 to the Qo site of the Cyt b6f complex. This process activates the Stt7/STN7 protein kinase (Vener et al., 1997; Zito et al., 1999), which is closely associated with this complex and leads to the phosphorylation of some LHCII proteins and to their detachment from PSII and binding to PSI (Depège et al., 2003; Lemeille et al., 2009). Although both Lhcb1 and Lhcb2 are phosphorylated, only the phosphorylated form of Lhcb2 is associated with PSI whereas phosphorylated Lhcb1 is excluded from this complex (Longoni et al., 2015). This state corresponds to state 2. In this way the change in the relative antenna sizes of the two photosystems restores the redox poise of the PQ pool. The process is reversible as over-excitation of PSI relative to PSII leads to the oxidation of the PQ pool and to the inactivation of the kinase. Under these conditions, phosphorylated LHCII associated with PSI is dephosphorylated by the PPH1/TAP38 phosphatase (Pribil et al., 2010; Shapiguzov et al., 2010) and returns to PSII (state 1). It should be noted, however, that a strict causal link between LHCII phosphorylation and its migration from PSII to PSI has been questioned recently by the finding that some phosphorylated LHCII remains associated with PSII supercomplexes and that LHCII serves as antenna for both photosystems under most natural light conditions (Drop et al., 2014; Wientjes et al., 2013).State transitions are important at low light but do not occur under high light because the LHCII kinase is inactivated under these conditions (Schuster et al., 1986). It was proposed that inactivation of the kinase is mediated by the ferredoxin-thioredoxin system and that a disulfide bond in the kinase rather than in the substrate may be the target site of thioredoxin (Rintamäki et al., 1997, 2000). Analysis of the Stt7/STN7 protein sequences indeed reveals the presence of two conserved Cys residues close to the N-terminal end of this kinase, which are conserved in all species examined and both are essential for kinase activity although they are located outside of the kinase catalytic domain (Fig. 1) (Depège et al., 2003; Lemeille et al., 2009). Based on protease protection studies, this model of the Stt7/STN7 kinase proposes that the N-terminal end of the kinase is on the lumen side of the thylakoid membrane separated from the catalytic domain on the stromal side by an unusual transmembrane domain containing several Pro residues (Lemeille et al., 2009). This configuration of the kinase allows its catalytic domain to act on the substrate sites of the LHCII proteins, which are exposed to the stroma. Although in this model the conserved Cys residues in the lumen are on the opposite side from the stromal thioredoxins, it is possible that thiol-reducing equivalents are transferred across the thylakoid membrane through the CcdA and Hcf164 proteins, which have been shown to operate in this way during heme and Cyt b6f assembly (Lennartz et al., 2001; Page et al., 2004) or through the LTO1 protein (Du et al., 2015; Karamoko et al., 2011).Figure 1.Conserved Cys in the Stt7/STN7 kinase. Alignment of the sequences of the Stt7/STN protein kinase from Selaginella moelendorffii (Sm), Physcomitrella patens (Pp), Oryza sativa (Os), Populus trichocarpa (Pt), Arabidopsis thaliana (At), Chlamydomonas reinhardtii ...Here we have examined the redox state of the Stt7/STN7 kinase during state transitions and after illumination with high light to test the proposed model. We find that the Stt7/STN7 kinase contains a disulfide bridge that appears to be intramolecular and maintained not only during state transitions but also in high light when the kinase is inactive. Although these results suggest at first sight that the disulfide bridge of Stt7/STN7 is maintained during its activation and inactivation, we propose that a transient opening of this bridge occurs during the activation process followed by the formation of an intermolecular disulfide bridge and the appearance of a short-lived, covalently linked kinase dimer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号