首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase
Authors:Li Yonghua  Beisson Fred  Ohlrogge John  Pollard Mike
Institution:Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
Abstract:The interface between plants and the environment is provided for aerial organs by epicuticular waxes that have been extensively studied. By contrast, little is known about the nature, biosynthesis, and role of waxes at the root-rhizosphere interface. Waxes isolated by rapid immersion of Arabidopsis (Arabidopsis thaliana) roots in organic solvents were rich in saturated C18-C22 alkyl esters of p-hydroxycinnamic acids, but also contained significant amounts of both alpha- and beta-isomers of monoacylglycerols with C22 and C24 saturated acyl groups and the corresponding free fatty acids. Production of these compounds in root waxes was positively correlated to the expression of sn-glycerol-3-P acyltransferase5 (GPAT5), a gene encoding an acyltransferase previously shown to be involved in aliphatic suberin synthesis. This suggests a direct metabolic relationship between suberin and some root waxes. Furthermore, when ectopically expressed in Arabidopsis, GPAT5 produced very-long-chain saturated monoacylglycerols and free fatty acids as novel components of cuticular waxes. The crystal morphology of stem waxes was altered and the load of total stem wax compounds was doubled, although the major components typical of the waxes found on wild-type plants decreased. These results strongly suggest that GPAT5 functions in vivo as an acyltransferase to a glycerol-containing acceptor and has access to the same pool of acyl intermediates and/or may be targeted to the same membrane domain as that of wax synthesis in aerial organs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号