首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The three-dimensional structure of septum site-determining protein MinD from Pyrococcus horikoshii OT3 in complex with Mg-ADP
Authors:Sakai N  Yao M  Itou H  Watanabe N  Yumoto F  Tanokura M  Tanaka I
Institution:Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
Abstract:BACKGROUND: In Escherichia coli, the cell division site is determined by the cooperative activity of min operon products MinC, MinD, and MinE. MinC is a nonspecific inhibitor of the septum protein FtsZ, and MinE is the supressor of MinC. MinD plays a multifunctional role. It is a membrane-associated ATPase and is a septum site-determining factor through the activation and regulation of MinC and MinE. MinD is also known to undergo a rapid pole-to-pole oscillation movement in vivo as observed by fluorescent microscopy. RESULTS: The three-dimensional structure of the MinD-2 from Pyrococcus horikoshii OT3 (PH0612) has been determined at 2.3 A resolution by X-ray crystallography using the Se-Met MAD method. The molecule consists of a beta sheet with 7 parallel and 1 antiparallel strands and 11 peripheral alpha helices. It contains the classical mononucleotide binding loop with bound ADP and magnesium ion, which is consistent with the suggested ATPase activity. CONCLUSIONS: Structure analysis shows that MinD is most similar to nitrogenase iron protein, which is a member of the P loop-containing nucleotide triphosphate hydrolase superfamily of proteins. Unlike nitrogenase or other member proteins that normally work as a dimer, MinD was present as a monomer in the crystal. Both the 31P NMR and Malachite Green method exhibited relatively low levels of ATPase activity. These facts suggest that MinD may work as a molecular switch in the multiprotein complex in bacterial cell division.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号