Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics. |
| |
Authors: | J M Bujnicki P Rotkiewicz A Kolinski L Rychlewski |
| |
Affiliation: | Bioinformatics Laboratory, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland. iamb@bioinfo.pl |
| |
Abstract: | Using a recent version of the SICHO algorithm for in silico protein folding, we made a blind prediction of the tertiary structure of the N-terminal, independently folded, catalytic domain (CD) of the I-TevI homing endonuclease, a representative of the GIY-YIG superfamily of homing endonucleases. The secondary structure of the I-TevI CD has been determined using NMR spectroscopy, but computational sequence analysis failed to detect any protein of known tertiary structure related to the GIY-YIG nucleases (Kowalski et al., Nucleic Acids Res., 1999, 27, 2115-2125). To provide further insight into the structure-function relationships of all GIY-YIG superfamily members, including the recently described subfamily of type II restriction enzymes (Bujnicki et al., Trends Biochem. Sci., 2000, 26, 9-11), we incorporated the experimentally determined and predicted secondary and tertiary restraints in a reduced (side chain only) protein model, which was minimized by Monte Carlo dynamics and simulated annealing. The subsequently elaborated full atomic model of the I-TevI CD allows the available experimental data to be put into a structural context and suggests that the GIY-YIG domain may dimerize in order to bring together the conserved residues of the active site. |
| |
Keywords: | |
|
|