(1) Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK;(2) Heidelberg Institute of Plant Sciences (HIP), Ruprecht-Karls-University, INF 360, D-69120 Heidelberg, Germany
Abstract:
The ubiquitous antioxidant thiol tripeptide glutathione is present in millimolar concentrations in plant tissues and is regarded as one of the major determinants of cellular redox homeostasis. Recent research has highlighted a regulatory role for glutathione in influencing the expression of many genes important in plants' responses to both abiotic and biotic stress. Therefore, it becomes important to consider how glutathione levels and its redox state are influenced by environmental factors, how glutathione is integrated into primary metabolism and precisely how it can influence the functioning of signal transduction pathways by modulating cellular redox state. This review draws on a number of recent important observations and papers to present a unified view of how the responsiveness of glutathione to changes in photosynthesis may be one means of linking changes in nuclear gene expression to changes in the plant's external environment.