首页 | 本学科首页   官方微博 | 高级检索  
     


Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase
Authors:Pande Abhay H  Qin Shan  Tatulian Suren A
Affiliation:Biomolecular Science Center, University of Central Florida, Orlando, 32826, USA.
Abstract:Mammalian 5-lipoxygenase (5-LO) catalyzes conversion of arachidonic acid to leukotrienes, potent mediators of inflammation and allergy. Upon cell stimulation, 5-LO selectively binds to nuclear membranes and becomes activated, yet the mechanism of recruitment of 5-LO to nuclear membranes and the mode of 5-LO-membrane interactions are poorly understood. Here we show that membrane fluidity is an important determinant of membrane binding strength of 5-LO, penetration into the membrane hydrophobic core, and activity of the enzyme. The membrane binding strength and activity of 5-LO increase with the degree of lipid acyl chain cis-unsaturation and reach a plateau with 1-palmitoyl-2-arachidonolyl-sn-glycero-3-phosphocholine (PAPC). A fraction of tryptophans of 5-LO penetrate into the hydrocarbon region of fluid PAPC membranes, but not into solid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes. Our data lead to a novel concept of membrane binding and activation of 5-LO, suggesting that arachidonic-acid-containing lipids, which are present in nuclear membranes at higher fractions than in other cellular membranes, may facilitate preferential membrane binding and insertion of 5-LO through increased membrane fluidity and may thereby modulate the activity of the enzyme. The data presented in this article and earlier data allow construction of a model for membrane-bound 5-LO, including the angular orientation and membrane insertion of the protein.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号