首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic variants in BRIP1 (BACH1) contribute to risk of nonsyndromic cleft lip with or without cleft palate
Authors:Adrianna Mostowska  Kamil K Hozyasz  Piotr Wójcicki  Daria Galas‐Filipowicz  Agnieszka Lasota  Izabella Dunin‐Wilczyńska  Margarita Lianeri  Pawe? P Jagodziński
Institution:1. Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland;2. Department of Paediatrics, Institute of Mother and Child, Warsaw, Poland;3. University Clinic of Medical Academy in Wroclaw and Department of Plastic Surgery Specialist Medical Center in Polanica Zdroj, Poland;4. Department of Jaw Orthopaedics, Medical University of Lublin, Lublin, Poland
Abstract:BACKGROUND: The etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) is very complex and still not well elucidated. Given the critical role of DNA damage repair in the embryonic development, we decided to test the hypothesis that polymorphisms of selected DNA repair genes might contribute to the risk of NSCL/P in the Polish population. METHODS: Analysis of 36 polymorphisms in 12 DNA damage repair genes (ATM, BLM, BRCA1, BRIP1, E2F1, MLH1, MRE11A, MSH2, MSH6, NBN, RAD50, and RAD51) was conducted using TaqMan assays in a group of 263 NSCL/P patients and matched control group (n = 526). RESULTS: Statistical analysis of genotyping results revealed that nucleotide variants in the BRIP1 (BACH1) gene were associated with the risk of NSCL/P. Under assumption of a dominant model, the calculated odds ratios (ORs) for BRIP1 rs8075370 and rs9897121 were 1.689 (95% confidence interval CI], 1.249–2.282; p = 0.0006) and 1.621 (95% CI, 1.200–2.191; p = 0.0016), respectively. These results were statistically significant even after applying multiple testing correction. Additional evidence for a causative role of BRIP1 in NSCL/P etiology was provided by haplotype analysis. Borderline association with a decreased risk of this anomaly was also observed for BLM rs401549 (ORrecessive = 0.406; 95% CI, 0.223–1.739; p = 0.002) and E2F1 rs2071054 (ORdominant = 0.632; 95% CI, 0.469–0.852; p = 0.003). CONCLUSION: Our study suggests that polymorphic variants of DNA damage repair genes play a role in the susceptibility to NSCL/P. BRIP1 might be novel candidate gene for this common developmental anomaly. Birth Defects Research (Part A), 100:670–678, 2014. © 2014 Wiley Periodicals, Inc.
Keywords:NSCL/P  DNA damage repair  BRIP1  BLM  E2F1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号