Incipient ring speciation revealed by a migratory divide
Authors:
DARREN E. IRWIN
Affiliation:
Biodiversity Research Centre, and Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
Abstract:
Ever since Ernst Mayr (1942) called ring species the ‘perfect demonstration of speciation’, they have attracted much interest from researchers examining how two species evolve from one. In a ring species, two sympatric and reproductively isolated forms are connected by a long chain of intermediate populations that encircle a geographic barrier. Ring species have the potential to demonstrate that speciation can occur without complete geographic isolation, in contrast to the classic model of allopatric speciation. They also allow researchers to examine the causes of reproductive isolation in the contact zone and to use spatial variation to infer the steps by which speciation occurs. According to the classical definition, a ring species must have (i) gradual variation through a chain of populations connecting two divergent and sympatric forms, and (ii) complete or nearly complete reproductive isolation between the terminal forms. But evolutionary biologists now recognize that the process of speciation might often occur with some periods of geographic contact and hybridization between diverging forms; during these phases, even partial reproductive isolation can limit gene flow and permit further divergence to occur. In this issue Bensch etal. (2009) make an exciting and important contribution by extending the ring species concept to a case in which the divergence is much younger and not yet advanced to full reproductive isolation. Their study of geographic variation in willow warblers (Phylloscopus trochilus; Fig. 1 ) provides a beautiful example of gradual variation through a ring of populations connecting two forms that are partially reproductively isolated where they meet, possibly due to divergent migratory behaviours of the terminal forms.