首页 | 本学科首页   官方微博 | 高级检索  
   检索      


First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera)
Authors:Ehrlich Hermann  Krautter Manfred  Hanke Thomas  Simon Paul  Knieb Christiane  Heinemann Sascha  Worch Hartmut
Institution:Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden University of Technology, Dresden, Germany. hermann.ehrlich@mailbox.tu-dresden.de
Abstract:Sponges (Porifera) are presently gaining increased scientific attention because of their secondary metabolites and specific skeleton structures. In contrast to demosponges, whose skeletons are formed from biopolymer spongin, glass sponges (hexactinellids) possess silica-organic composites as the main natural material for their skeletal fibres. Chitin has a crystalline structure and it constitutes a network of organized fibres. This structure confers rigidity and resistance to organisms that contain it, including monocellular (yeast, amoeba, diatoms) and multicellular (higher fungi, arthropods, nematodes, molluscs) organisms. In contrast to different marine invertebrates whose exoskeletons are built of chitin, this polysaccharide has not been found previously as an endogenous biopolymer within glass sponges (Hexactinellida). We hypothesized that glass sponges, which are considered to be the most basal lineage of multicellular animals, must possess chitin. Here, we present a detailed study of the structural and physico-chemical properties of skeletal fragments of the glass sponge Farrea occa. We show that these fibres have a layered design with specific compositional variations in the chitin/silica composite. We applied an effective approach for the demineralization of glass sponge skeletal formations based on an etching procedure using alkali solutions. The results show unambiguously that alpha-chitin is an essential component of the skeletal structures of Hexactinellida. This is the first report of a silica-chitin's composite biomaterial found in nature. From this perspective, the view that silica-chitin scaffolds may be key templates for skeleton formation also in ancestral unicellular organisms, rather than silica-protein composites, emerges as a viable alternative hypothesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号