首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A conserved GXXXG motif in APH-1 is critical for assembly and activity of the gamma-secretase complex
Authors:Lee Sheu-Fen  Shah Sanjiv  Yu Cong  Wigley W Christian  Li Harry  Lim Myungsil  Pedersen Kia  Han Weiping  Thomas Philip  Lundkvist Johan  Hao Yi-Heng  Yu Gang
Institution:Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
Abstract:The multipass membrane protein APH-1, found in the gamma-secretase complex together with presenilin, nicastrin, and PEN-2, is essential for Notch signaling in Caenorhabditis elegans embryos and is required for intramembrane proteolysis of Notch and beta-amyloid precursor protein in mammalian and Drosophila cells. In C. elegans, a mutation of the conserved transmembrane Gly123 in APH-1 (mutant or28) leads to a notch/glp-1 loss-of-function phenotype. In this study, we show that the corresponding mutation in mammalian APH-1aL (G122D) disrupts the physical interaction of APH-1aL with hypoglycosylated immature nicastrin and the presenilin holoprotein as well as with mature nicastrin, presenilin, and PEN-2. The G122D mutation also reduced gamma-secretase activity in intramembrane proteolysis of membrane-tethered Notch. Moreover, we found that the conserved transmembrane Gly122, Gly126, and Gly130 in the fourth transmembrane region of mammalian APH-1aL are part of the membrane helix-helix interaction GXXXG motif and are essential for the stable association of APH-1aL with presenilin, nicastrin, and PEN-2. These findings suggest that APH-1 plays a GXXXG-dependent scaffolding role in both the initial assembly and subsequent maturation and maintenance of the active gamma-secretase complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号