首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of myelin basic protein with different ionization states of phosphatidic acid and phosphatidylserine
Authors:J M Boggs  L S Chia  G Rangaraj  M A Moscarello
Abstract:Myelin basic protein (BP) has a perturbing effect on some lipids, causing, among other effects, a decrease in the temperature and enthalpy of the phase transition. This is believed to be a result of penetration of some hydrophobic residues of the protein partway into the lipid bilayer. Variations in the perturbing effect of BP on different acidic lipids has been attributed to the ability of the lipids to participate in intermolecular hydrogen bonding which inhibits penetration of the protein. Participation in intermolecular hydrogen bonding depends on the ionization state of the lipid as well as the type of lipid. In order to further test the dependence of the degree of penetration of BP on the intermolecular hydrogen bonding properties of lipids, the effect of BP on the phase transition of lipids in different ionization states was studied using differential scanning calorimetry. Dipalmitoylphosphatidic acid (DPPA) and dimyristoylphosphatidylserine (DMPS) were studied at different pH-values from 4 to 9.5. The results were compared to data obtained earlier with phosphatidylglycerol (PG), which is in the same ionization state at pH-values above 4, in order to distinguish the effects of pH on the protein from effects on the lipids. The perturbing effect of BP on PG increases with increase in pH. This is probably a result of the increasing hydrophobicity of the protein as the histidines become deprotonated, which allows greater penetration of the protein into the bilayer. In contrast, the effect on DPPA was greatest at low pH, where the state of ionization of the lipid is less than 1 and protein binding utilizes all of the hydrogen bond accepting sites (P-O-) on the lipid. BP had no perturbing effect on DPPA at higher pH where the state of ionization is between 1 and 1.5, and hydrogen bond accepting and donating sites (P-OH) are still available even after binding of the protein. Thus hydrogen bonding occurs at high pH and penetration of hydrophobic residues of the protein into DPPA is inhibited. BP had a large perturbing effect on DMPS at all pH values above 4 suggesting that lipid intermolecular hydrogen bonding does not occur in the presence of the protein and its hydrophobic residues consequently can penetrate into the bilayer. The protein may inhibit hydrogen bonding by binding electrostatically to the anionic hydrogen bond accepting group of PS.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号