首页 | 本学科首页   官方微博 | 高级检索  
     


ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G1/S progression in T24 bladder carcinoma cells
Authors:Karolin Léger  Ann-Katrin Hopp  Monika Fey
Affiliation:1. Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland;2. Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
Abstract:ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.
Keywords:cell cycle regulation  cyclin E  E2F-1  gene expression  p27  PARP1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号