首页 | 本学科首页   官方微博 | 高级检索  
     


Methylation of rat liver mitochondrial deoxyribonucleic acid by chemical carcinogens and associated alterations in physical properties.
Authors:R Wilkinson  A Hawks  A E Pegg
Affiliation:Courtauld Institute of Biochemistry, Middlesex Hospital Medical School, London W1P 5PR Great Britain
Abstract:The formation of 7-methylguanine in rat liver mitochondrial DNA following the administration of the powerful carcinogen, dimethylnitrosamine, and the weak carcinogen, methyl methanesulphonate was measured and compared to the alkylation of nuclear DNA by these agents. At all doses tested mitochondrial DNA was alkylated more extensively than nuclear DNA by dimethylnitrosamine but both types of cellular DNA were alkylated to about the same extent by methyl methanesulphonate. The physical structure of rat liver mitochondrial DNA isolated from animals treated with these agents was investigated by electrophoresis in agarose gels and by isopycnic centrifugation in CsCl gradients. These procedures carried out in the presence of ethidium bromide, an intercalating dye, separate closed circular forms of mitochondrial DNA from open circular molecules (containing a single-strand break) and linear molecules. Administration of dimethylnitrosamine produced a considerable decrease in the amount of mitochondrial DNA which could be isolated in the closed circular form and at higher doses of dimethylnitrosamine no closed circular mitochondrial DNA could be found. Methyl methanesulphonate was less effective at reducing the amount of closed circular mitochondrial DNA. One explantation of these results is that dimethylnitrosamine leads to strand breaks in mitochondrial DNA and the possible use of this system to investigate carcinogen-induced breaks in DNA is discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号