首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formulation and numerical simulations of a continuum model of avascular tumor growth
Authors:Mahmood Mohammed Shuker  Mahmood Silvia  Dobrota Dušan
Institution:a Department of Applied Mathematics, Mechanical Engineering Faculty, University of Žilina, 010 26 Žilina, Slovakia;b Institute of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 037 54 Martin, Slovakia
Abstract:In this paper we present a continuum mathematical model for a multicellular spheroid that mimics the micro-environment within avascular tumor growth. The model consists of a coupled system of non-linear convection-diffusion-reaction equations. This system is solved using a previously developed conservative Galerkin characteristics method. In the model considered, there are three cell types: the proliferative cells, the quiescent non-dividing cells which stay in the G0 phase of the cell cycle and the necrotic cells. The model includes viable cell diffusion, diffusion of cellular material and the removal of necrotic cells. We assume that the nutrients diffuse passively and are consumed by the proliferative and quiescent tumor cells depending on the availability of resources (oxygen, glucose, etc.). The numerical simulations are performed using different sets of parameters, including biologically realistic ones, to explore the effects of each of these model parameters on reaching the steady state. The present results, taken together with those reported earlier, indicate that the removal of necrotic cells and the diffusion of cellular material have significant effects on the steady state, reflecting growth saturation, the number of viable cells, and the spheroid size.
Keywords:Avascular tumor growth  Cell movement  Cell cycle  Numerical solution
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号